Implicit Shape Control Environments

PegInHoleEnv

class gym_agx.envs.implicit.peg_in_hole_env.PegInHoleEnv(n_substeps=1, reward_type='dense', observation_type='state', headless=False, image_size=[64, 64], **kwargs)

Peg-in-hole environment.

render(mode='human')

Renders the environment.

The set of supported modes varies per environment. (And some environments do not support rendering at all.) By convention, if mode is:

  • human: render to the current display or terminal and return nothing. Usually for human consumption.

  • rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video.

  • ansi: Return a string (str) or StringIO.StringIO containing a terminal-style text representation. The text can include newlines and ANSI escape sequences (e.g. for colors).

Note:
Make sure that your class's metadata 'render.modes' key includes

the list of supported modes. It's recommended to call super() in implementations to use the functionality of this method.

Args:

mode (str): the mode to render with

Example:

class MyEnv(Env):

metadata = {'render.modes': ['human', 'rgb_array']}

def render(self, mode='human'):
if mode == 'rgb_array':

return np.array(...) # return RGB frame suitable for video

elif mode == 'human':

... # pop up a window and render

else:

super(MyEnv, self).render(mode=mode) # just raise an exception

step(action)

Run one timestep of the environment's dynamics. When end of episode is reached, you are responsible for calling reset() to reset this environment's state.

Accepts an action and returns a tuple (observation, reward, done, info).

Args:

action (object): an action provided by the agent

Returns:

observation (object): agent's observation of the current environment reward (float) : amount of reward returned after previous action done (bool): whether the episode has ended, in which case further step() calls will return undefined results info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

reset()

Resets the environment to an initial state and returns an initial observation.

Note that this function should not reset the environment's random number generator(s); random variables in the environment's state should be sampled independently between multiple calls to reset(). In other words, each call of reset() should yield an environment suitable for a new episode, independent of previous episodes.

Returns:

observation (object): the initial observation.

RubberBandEnv

class gym_agx.envs.implicit.rubber_band_env.RubberBandEnv(n_substeps=1, reward_type='dense', observation_type='state', headless=False, image_size=[64, 64], **kwargs)

Rubber band environment.

render(mode='human')

Renders the environment.

The set of supported modes varies per environment. (And some environments do not support rendering at all.) By convention, if mode is:

  • human: render to the current display or terminal and return nothing. Usually for human consumption.

  • rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video.

  • ansi: Return a string (str) or StringIO.StringIO containing a terminal-style text representation. The text can include newlines and ANSI escape sequences (e.g. for colors).

Note:
Make sure that your class's metadata 'render.modes' key includes

the list of supported modes. It's recommended to call super() in implementations to use the functionality of this method.

Args:

mode (str): the mode to render with

Example:

class MyEnv(Env):

metadata = {'render.modes': ['human', 'rgb_array']}

def render(self, mode='human'):
if mode == 'rgb_array':

return np.array(...) # return RGB frame suitable for video

elif mode == 'human':

... # pop up a window and render

else:

super(MyEnv, self).render(mode=mode) # just raise an exception

step(action)

Run one timestep of the environment's dynamics. When end of episode is reached, you are responsible for calling reset() to reset this environment's state.

Accepts an action and returns a tuple (observation, reward, done, info).

Args:

action (object): an action provided by the agent

Returns:

observation (object): agent's observation of the current environment reward (float) : amount of reward returned after previous action done (bool): whether the episode has ended, in which case further step() calls will return undefined results info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

reset()

Resets the environment to an initial state and returns an initial observation.

Note that this function should not reset the environment's random number generator(s); random variables in the environment's state should be sampled independently between multiple calls to reset(). In other words, each call of reset() should yield an environment suitable for a new episode, independent of previous episodes.

Returns:

observation (object): the initial observation.

CableClosingEnv

class gym_agx.envs.implicit.cable_closing_env.CableClosingEnv(n_substeps=1, reward_type='dense', observation_type='gt', headless=False, **kwargs)

Cable closing environment.

render(mode='human')

Renders the environment.

The set of supported modes varies per environment. (And some environments do not support rendering at all.) By convention, if mode is:

  • human: render to the current display or terminal and return nothing. Usually for human consumption.

  • rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video.

  • ansi: Return a string (str) or StringIO.StringIO containing a terminal-style text representation. The text can include newlines and ANSI escape sequences (e.g. for colors).

Note:
Make sure that your class's metadata 'render.modes' key includes

the list of supported modes. It's recommended to call super() in implementations to use the functionality of this method.

Args:

mode (str): the mode to render with

Example:

class MyEnv(Env):

metadata = {'render.modes': ['human', 'rgb_array']}

def render(self, mode='human'):
if mode == 'rgb_array':

return np.array(...) # return RGB frame suitable for video

elif mode == 'human':

... # pop up a window and render

else:

super(MyEnv, self).render(mode=mode) # just raise an exception

step(action)

Run one timestep of the environment's dynamics. When end of episode is reached, you are responsible for calling reset() to reset this environment's state.

Accepts an action and returns a tuple (observation, reward, done, info).

Args:

action (object): an action provided by the agent

Returns:

observation (object): agent's observation of the current environment reward (float) : amount of reward returned after previous action done (bool): whether the episode has ended, in which case further step() calls will return undefined results info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

reset()

Resets the environment to an initial state and returns an initial observation.

Note that this function should not reset the environment's random number generator(s); random variables in the environment's state should be sampled independently between multiple calls to reset(). In other words, each call of reset() should yield an environment suitable for a new episode, independent of previous episodes.

Returns:

observation (object): the initial observation.